137 research outputs found

    Fabrication of Atomically Precise Nanopores in Hexagonal Boron Nitride

    Get PDF
    We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (hBN) with atomically precise control of the pore size. Previous methods of pore production in other 2D materials create pores of irregular geometry with imprecise diameters. By taking advantage of the preferential growth of boron vacancies in hBN under electron beam irradiation, we are able to observe the pore growth via transmission electron microscopy, and terminate the process when the pore has reached its desired size. Careful control of beam conditions allows us to nucleate and grow individual triangular and hexagonal pores with diameters ranging from subnanometer to 6nm over a large area of suspended hBN using a conventional TEM. These nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation. Furthermore, the chemical edge-groups along the hBN pores can be made entirely nitrogen terminated or faceted with boron-terminated edges, opening avenues for tailored functionalization and extending the applications of these hBN nanopores.Comment: 5 pages, 6 figure

    Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering

    Get PDF
    Double-wall carbon nanotubes are themolecular analogues to coaxial cables. Narrow diameter double-walled carbon nanotubes (DWNTs) have been obtained by catalytic chemical vapour deposition process with high yield and characterized by scanning and transmission electron microscopy. We examine the inelastic light scattering spectrum of mostly DWNTs with internal tubes of subnanometre diameter. We observe particularly narrow radial breathing modes corresponding to the internal tubes of diameter less than 0.7 nm of double-walled tubes. The D band is found to be strongly helicity dependent and the tangential modes in narrow diameter DWNTs are found to be often down-shifted

    Alternative Stacking Sequences in Hexagonal Boron Nitride

    Get PDF
    The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohesive energy, leading to alternative stable crystal structures. Here we theoretically and experimentally explore different stacking sequences in the van der Waals bonded material hexagonal boron nitride (h-BN). We examine the total energy, electronic bandgap, and dielectric response tensor for five distinct high symmetry stacking sequences for both bulk and bilayer forms of h-BN. Two sequences, the generally assumed AA' sequence and the relatively unknown (for h-BN) AB (Bernal) sequence, are predicted to have comparably low energy. We present a scalable modified chemical vapor deposition method that produces large flakes of virtually pure AB stacked h-BN; this new material complements the generally available AA' stacked h-BN

    Characterizing Transition-Metal Dichalcogenide Thin-Films using Hyperspectral Imaging and Machine Learning

    Get PDF
    Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS2 films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements

    Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor

    Get PDF
    Crucial to analyze phenomena as varied as plasmonic hot spots and the spread of cancer in living tissue, nanoscale thermometry is challenging: probes are usually larger than the sample under study, and contact techniques may alter the sample temperature itself. Many photostable nanomaterials whose luminescence is temperature-dependent, such as lanthanide-doped phosphors, have been shown to be good non-contact thermometric sensors when optically excited. Using such nanomaterials, in this work we accomplished the key milestone of enabling far-field thermometry with a spatial resolution that is not diffraction-limited at readout. We explore thermal effects on the cathodoluminescence of lanthanide-doped NaYF4_4 nanoparticles. Whereas cathodoluminescence from such lanthanide-doped nanomaterials has been previously observed, here we use quantitative features of such emission for the first time towards an application beyond localization. We demonstrate a thermometry scheme that is based on cathodoluminescence lifetime changes as a function of temperature that achieves \sim 30 mK sensitivity in sub-μ\mum nanoparticle patches. The scheme is robust against spurious effects related to electron beam radiation damage and optical alignment fluctuations. We foresee the potential of single nanoparticles, of sheets of nanoparticles, and also of thin films of lanthanide-doped NaYF4_4 to yield temperature information via cathodoluminescence changes when in the vicinity of a sample of interest; the phosphor may even protect the sample from direct contact to damaging electron beam radiation. Cathodoluminescence-based thermometry is thus a valuable novel tool towards temperature monitoring at the nanoscale, with broad applications including heat dissipation in miniaturized electronics and biological diagnostics.Comment: Main text: 30 pages + 4 figures; supplementary information: 22 pages + 8 figure

    Blue-Light-Emitting Color Centers in High-Quality Hexagonal Boron Nitride

    Get PDF
    Light emitters in wide band gap semiconductors are of great fundamental interest and have potential as optically addressable qubits. Here we describe the discovery of a new color center in high-quality hexagonal boron nitride (h-BN) with a sharp emission line at 435 nm. The emitters are activated and deactivated by electron beam irradiation and have spectral and temporal characteristics consistent with atomic color centers weakly coupled to lattice vibrations. The emitters are conspicuously absent from commercially available h-BN and are only present in ultra-high-quality h-BN grown using a high-pressure, high-temperature Ba-B-N flux/solvent, suggesting that these emitters originate from impurities or related defects specific to this unique synthetic route. Our results imply that the light emission is activated and deactivated by electron beam manipulation of the charge state of an impurity-defect complex

    Systematic Determination of Absolute Absorption Cross-section of Individual Carbon Nanotubes

    Full text link
    Determination of optical absorption cross-section is always among the central importance of understanding a material. However its realization on individual nanostructures, such as carbon nanotubes, is experimentally challenging due to the small extinction signal using conventional transmission measurements. Here we develop a technique based on polarization manipulation to enhance the sensitivity of single-nanotube absorption spectroscopy by two-orders of magnitude. We systematically determine absorption cross-section over broad spectral range at single-tube level for more than 50 chirality-defined single-walled nanotubes. Our data reveals chirality-dependent one-dimensional photo-physics through the behaviours of exciton oscillator strength and lifetime. We also establish an empirical formula to predict absorption spectrum of any nanotube, which provides the foundation to determine quantum efficiencies in important photoluminescence and photovoltaic processes
    corecore